ARTG 5150 SUMMER 2019

INFORMATION VISUALIZATION PRINCIPLES AND PRACTICES

COURSE OVERVIEW • MAY 2019 INSTRUCTOR • PEDRO M. CRUZ

p.cruz@northeastern.edu

OVERVIEW

Introduces information visualization from theoretical and practical perspectives. Defines the information visualization domain and advances principles and methods for the effective visual representation of data. Contextualizes the field from a historical perspective. Presents the perceptual and cognitive tasks enabled by visualizations. Studies an extensive range of visualization models. Illustrates good and bad practices in visualization with real-world examples. Introduces computer programming in an information visualization context.

LEARNING OUTCOMES Identify and describe the information visualization domain as an interdisciplinary field. -Understand historically how information visualization emerged, and its historic and contemporary importance. -Present a rationale for information design principles. -Decode the perceptual theory behind the good construction of graphs. -Identify and create functional goals in an information visualization context. -Ideate interaction strategies for information visualization. -Critique and assess a visualization. Know what type of visualizations exist and articulate their particularities. Classify a visualization as being of a specific type. Apply visualization models to specific datasets. -Use a programming language, on a beginner lever, to load, analyze, and visualize data.

PRELIMINARY PROGRAM		
Module o		
Introductions and course structure.		
Assignment: maps and perception.		
————Module I What is visualization? From scientific to information visualization. Definitions, approaches, conceptual models and processes. Assignment: readings and essay.		
Module 2		
Taxonomies in information visualization. An overview of two-dime		
sional plattiam a a banchanta histormana bullat amanba donsity		

Taxonomies in information visualization. An overview of two-dimensional plotting: e.g. bar charts, histograms, bullet graphs, density plots, violin plots, mosaic plots, area charts, line charts, stacked area charts, horizon charts, sparklines.

Quizzes.

-----Module 3

Circular models to show proportions: pie charts, polar area charts, spie charts, donut charts, radial column and bar charts.

Assignment: the effectiveness of antibiotics and their visualization.

————Module 4

Multivariate visualizations and flows: parallel coordinates, radar charts, parallel sets, alluvial diagrams, sankey diagrams, and flow maps.

Assignment: exploring and designing alluvial diagrams for a demographic set.

	Module 5
Hi	erarchical structures: trees, dendrograms, tree maps, icicle plots,
	ronoi tree maps, circular tree maps, and sunburst diagrams.
As	signment: exploring and designing sunburst diagrams for a demo
gr	aphic set.
	Module 6
W	orkshop: loading large texts, lemma extraction, word aggregation
so	rting data, and word count visualization.
As	signment: loading additional texts, filtering words, and modifying
the	e visualization.
	——Module 7
Ne	etworks: arc diagrams, chord diagrams, node-link diagrams, force
di	rected layouts, hyperbolic trees, hive plots and adjacency matrixes
As	signment: experimenting with network visualization by using
no	de-link diagrams, arc diagrams, and chord diagrams.
	Module 8
W	orkshop: implementing a force-direct layout for network visualiza
tic	on.
As	signment: exploration of physical and visual properties of a force-
di	rected layout.

Information design principles: graphical integrity, data-ink ratio,

Assignment: identifying and critiquing bad design choices.

chartjunk, data density, and small multiples.

----Module 9

Semiotics of graphics: information components, visual variables, classes of representation, and perceptual tasks in graphics.

Assignment: analyzing visual variables and perceptual tasks in graphics

——Module 11

Tasks by data type in information visualization: overview, zoom, filter, details-on-demand, relate, history, and extract Validation approaches and strategies in information visualization visualization: technique-driven, user-driven, design-driven, and theoretically-driven.

Assignment: sketching a visualization and formulating and illustrating use cases for information-seeking tasks.